Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Background The most species-rich radiation of animal life in the 66 million years following the Cretaceous extinction event is that of schizophoran flies: a third of fly diversity including Drosophila fruit fly model organisms, house flies, forensic blow flies, agricultural pest flies, and many other well and poorly known true flies. Rapid diversification has hindered previous attempts to elucidate the phylogenetic relationships among major schizophoran clades. A robust phylogenetic hypothesis for the major lineages containing these 55,000 described species would be critical to understand the processes that contributed to the diversity of these flies. We use protein encoding sequence data from transcriptomes, including 3145 genes from 70 species, representing all superfamilies, to improve the resolution of this previously intractable phylogenetic challenge. Results Our results support a paraphyletic acalyptrate grade including a monophyletic Calyptratae and the monophyly of half of the acalyptrate superfamilies. The primary branching framework of Schizophora is well supported for the first time, revealing the primarily parasitic Pipunculidae and Sciomyzoidea stat. rev. as successive sister groups to the remaining Schizophora. Ephydroidea, Drosophila ’s superfamily, is the sister group of Calyptratae. Sphaeroceroidea has modest support as the sister to all non-sciomyzoid Schizophora. We define two novel lineages corroborated by morphological traits, the ‘Modified Oviscapt Clade’ containing Tephritoidea, Nerioidea, and other families, and the ‘Cleft Pedicel Clade’ containing Calyptratae, Ephydroidea, and other families. Support values remain low among a challenging subset of lineages, including Diopsidae. The placement of these families remained uncertain in both concatenated maximum likelihood and multispecies coalescent approaches. Rogue taxon removal was effective in increasing support values compared with strategies that maximise gene coverage or minimise missing data. Conclusions Dividing most acalyptrate fly groups into four major lineages is supported consistently across analyses. Understanding the fundamental branching patterns of schizophoran flies provides a foundation for future comparative research on the genetics, ecology, and biocontrol.more » « less
-
Abstract The hemipteran suborder Auchenorrhyncha is a highly diverse, ecologically and agriculturally important group of primarily phytophagous insects which has been a source of phylogenetic contention for many years. Here, we have used transcriptome sequencing to assemble 2139 orthologues from 84 auchenorrhynchan species representing 27 families; this is the largest and most taxonomically comprehensive phylogenetic dataset for this group to date. We used both maximum likelihood and multispecies coalescent analyses to reconstruct the evolutionary history in this group using amino acid, nucleotide, and degeneracy‐coded nucleotide orthologue data. Although many relationships at the superfamily level were consistent between analyses, several differing, highly supported topologies were recovered using different datasets and reconstruction methods, most notably the differential placement of Cercopoidea as sister to either Cicadoidea or Membracoidea. To further interrogate the recovered topologies, we explored the contribution of genes as partitioned by third‐codon‐position guanine‐cytosine (GC) content and heterogeneity. We found consistent support for several relationships, including Cercopoidea + Cicadoidea, most often in genes that would be expected to be enriched for the true species tree if recombination‐based dynamics in GC content have contributed to the observed GC heterogeneity. Our results provide a generally well‐supported framework for future studies of auchenorrhynchan phylogeny and suggest that transcriptome sequencing is likely to be a fruitful source of phylogenetic data for resolving its clades. However, we caution that future work should account for the potential effects of GC content heterogeneity on relationships recovered in this group.more » « less
An official website of the United States government
